再録 報文

Med Sci Sports Exerc. 2021; 53(9): 1855-1864.

Female Athletes Genetically Susceptible to Fatigue Fracture Are Resistant to Muscle Injury: Potential Role of COL1A1 Variant

Eri Miyamoto-Mikami¹, Hiroshi Kumagai^{1,2}, Kumpei Tanisawa³, Yuki Taga⁴, Kosuke Hirata⁵, Naoki Kikuchi⁶, Nobuhiro Kamiya⁷, Ryoko Kawakami³, Taishi Midorikawa⁸, Takuji Kawamura³, Ryo Kakigi⁹, Toshiharu Natsume¹, Hirofumi Zempo¹⁰, Koya Suzuki¹, Yoshimitsu Kohmura¹, Kazunori Mizuno⁴, Suguru Torii³, Shizuo Sakamoto³, Koichiro Oka³, Mitsuru Higuchi³, Hisashi Naito¹, Naokazu Miyamoto¹, Noriyuki Fuku¹ ¹Juntendo University, Chiba, Japan. ²University of Southern California, USA. ³Waseda University, Saitama, Japan. ⁴Nippi Research Institute of Biomatrix, Ibaraki, Japan. ⁵Shibaura Institute of Technology, Saitama, Japan. ⁶Nippon Sport Science University, Tokyo, Japan ⁷Tenri University, Nara, Japan. ⁸J. F. Oberlin University, Tokyo, Japan.

Abstract

Purpose: We aimed to investigate the hypothesis that type I collagen plays a role in increasing bone mineral density (BMD) and muscle stiffness, leading to low and high risks of fatigue fracture and muscle injury, respectively, in athletes. As a potential mechanism, we focused on the effect of the type I collagen alpha 1 chain gene (COL1A1) variant associated with transcriptional activity on bone and skeletal muscle properties.

Methods: The association between COL1A1 rs1107946 and fatigue fracture/muscle injury was evaluated in Japanese athletes. Effects of the polymorphism on tissue properties (BMD and muscle stiffness) and type I collagen $\alpha 1/\alpha 2$ chain ratios in muscles were examined in Japanese nonathletes.

Results: The C-allele carrier frequency was greater in female athletes with fatigue fracture than in those without (odds ratio = 2.44, 95% confidence interval [CI] = 1.17-5.77) and lower in female athletes with muscle injury than in those without (odds ratio = 0.46, 95% CI = 0.24-0.91). Prospective validation analysis confirmed that in female athletes, muscle injury was less frequent in C-allele carriers than in AA genotype carriers (multivariable-adjusted hazard ratio = 0.27, 95% CI = 0.08-0.96). Among female nonathletes, the C-allele of rs1107946 was associated with lower BMD and lower muscle stiffness. Muscle biopsy revealed that C-allele carriers tended to have a larger type I collagen $\alpha 1/\alpha 2$ chain ratio than AA genotype carriers (2.24 vs 2.05, P = 0.056), suggesting a higher proportion of type I collagen $\alpha 1$ homotrimers.

Conclusion: The COL1A1 rs1107946 polymorphism exerts antagonistic effects on fatigue fracture and muscle injury among female athletes by altering the properties of these tissues, potentially owing to increased levels of type I collagen a1 chain homotrimers.